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The ground state and first few excited energy levels of the generalized anharmonic 
oscillator defined by the Hamiltonian H = -d2/dx2+ x2+ ax 2k (k = 3, 4, . . . )  
have been calculated by employing the method of quantum normal form, which 
is the quantum mechanical analogue of the classical Birkhoff-Gustavson normal 
form. The present energy eigenvalues are consistent with other tabulations of 
the energy levels. 

1. I N T R O D U C T I O N  

In recent  years  there  has  been  a large and  i m p o r t a n t  l i te ra ture  on the 
m e thods  for  s tudy ing  a we l l -known  class o f  s ingle-wel l  q u a n t u m  a n h a r m o n i c  
osci l la tors .  These  o n e - b o d y  Sch r6d inge r  p r o b l e m s  have p l a y e d  a pa r t i cu l a r ly  
i m p o r t a n t  role  in recent  years  as mode l  boson i c  field theor ies  which  con ta in  
on ly  one mode .  This m o d e  is gene ra t ed  by  the usual  h a r m o n i c  osc i l l a to r  
c rea t ion  o p e r a t o r  a t. In  this  respec t  the a n h a r m o n i c  osc i l la tors  m a y  be 
cons ide red  as the ( 0 +  D - d i m e n s i o n a l  coun te rpa r t s  o f  more  real is t ic  quan-  
tum field theor ies  in the  phys ica l  wor ld  o f  (3 + 1) -d imens iona l i ty .  

The  p resen t  p a p e r  dea ls  with the Sch r6d inge r  equa t ion  for  the  one-  
d i m e n s i o n a l  H a m i l t o n i a n  o p e r a t o r  

1 2 H = ~_( p ~- x2)  -~- ~ x  2k ( 1 )  

with p = - i  d / d x ,  k = 2, 3, 4 , . . . ,  which  represen t s  a 2 k - a n h a r m o n i c  oscil-  
lator.  This p r o b l e m  has been  a t t acked  by  a n u m b e r  o f  workers  using different  
t echniques  ( A r p o n e n  and  Bishop,  1990; Biswas et al., 1973; Hio  et a t ,  1976; 
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Marziani, 1984; Taseli and Demirlap, 1988; Austin, 1984; Bhattacharya et 
al., 1984; Banarjee, 1978; Fernandez et aL, 1985). We have employed the 
formalism of quantum normal form (QNF), which is the quantum 
mechanical analogue of the classical transformations to Birkhott-Gustavson 
normal form (BGNF) (Birkhott, 1927; Gustavson, 1966), to study the 
problem. 

2. T H E O R Y  

We introduce the creation and annihilation operators in the basis set 
of harmonic oscillator wave functions, 

a = 2-~/2(x  + ip) (2) 

a + = 2-1/2(x - ip) (3) 

d 
p = - i - -  (4) 

dx  

where the symbols have their usual meanings. 
We have 

[a, a +] = 1 (5) 

, I n )  = nl/Zln - 1) (6) 

a+l n) = (n + 1)'/21 n + 1) (7) 

where In) represents the nth eigenket of the harmonic oscillator. 
The Hamiltonian (1) has been discussed in the literature for various 

values of k. The case k = 2 has been studied independently by Ali (1985) 
and Eckhardt (1986) using the QNF, which has been used by Brajamani 
and Mazumdar (1988) to study the case k = 3 for A << 1. However, they did 
not present the converged energy eigenvalues. 

Transformations to normal form can be started from a Taylor expansion 
of the Hamiltonian around a point of equilibrium, 

H = H o + E  A~/-/. (8) 

where 

H o = a + a + � 8 9  (9) 



Anharmonic Oscillators 489 

is the harmonic  part  and where H is a polynomial  in a + and a, homogeneous 
of  degree/z + 2. Obviously the quadratic part  of/4o is already in the normal  
form. A Lie t ransformation (Eckhardt  1986, 1988; Brajamani and Mazum- 
dar, 1988) with a generator S. and a "t ime variable" e = A can be used to 
transform the increasing order of  perturbation to normal form and we find 
that 

n--1 
p. n H = H 0 +  Y, h H . + A  (H.+[S. ,Ho])+O(A "+') (10) 

/.L=I 

Since lower-order terms are not affected by the transformation,  S. can be 
used to eliminate nonnormal  terms in H. .  This requires solution of an 
equation 

[S., Ho] + 1-1. = normal  (11) 

As shown by Eckhardt  (1988), equation (11) boils down to the fact that we 
have to find a self-adjoint operator  S. such that 

[S.,  Ho] = --HR (12) 

where HR is the nonnormal  part  in H. 
Using the ladder operators defined in equations (2) and (3), the quan- 

tum mechanical Hamil tonian operator of  the one-dimensional  x 2k oscillator 
is 

A a + ) 2  k H=l(p2  + x 2 ) + ~  (a + (13) 

In order to tackle the expression (a + a+) 2k, the main problem arises 
from the fact that a and a + do not commute.  But it is possible to express 
the bionomial  expansion (a++a) p through Newton binomials as (Duch, 
1983) 

[ p /2 ]  

( a + + a )  p =  Z (2m-1)!!Pc2m(a++a)PN 2m (14) 
rrl=0 

[p /2 ]  is the integer part  of  p/2, and 

( 2 m - I ) ! ! =  1 �9 3 �9 5 . 7  . . . . .  ( 2 m -  1) 

(a++a) k is a Newton binomial,  which is defined as 

(15) 

k 
( a + + a ) ~  = )~ %r(a+)k-ra r 

r =O  
(16) 
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In  the presen t  case p = 2k. We have 
(a + a+) 2k = [ (a  +~k + a 2k) + 2%2(a'~k-~ + a ~2k-~) 

+ 3 ! ! 2%4( a+(2~-4~ + a(2k-4)) + �9 �9 . + ( 2 k -  1)!!] 

+ [2kcl(a+(2k-l~a + a+a ~2k-1~) 

+ 2%2(a+(2k-2)a2 + a+2a (2k-2~) + . . .  ] 

+ 2kc2[(2k--2)cl(a+(2k--3) a + a+a (2k-3)) 

+ (2k-2)c2(a+(2k-a)a2 + a+2a (2k-4)) + . . .  ] 

+ 3 !! 2kCa[(2k-a)r + a+a ~2k-5)) 

+ (zk-4)c2(a+(2k-6)a2+ a+2a (2k-6)) + .  �9 �9 ] + .  �9 . (17) 

N o w  using (13) and  (17), the Hami l t on i an  for  the sextic (k  = 3) and  octic 
(k = 4) a n h a r m o n i c  osci l lators  can be wri t ten as 

H = 14o+ (HN + HR) (18) 

where  HN and  HR are, respect ively,  the no rma l  and n o n n o r m a l  parts  o f  H :  

HN =-~(20a+3a3+90a+2a2+90a+a+15) ( k = 3 )  (19) 

+4 4 +3 3 H u = i - ~ ( 7 0 a  a + 5 6 0 a  a +1260a+2a2+840a+a+105) ( k = 4 )  

(20) 

)t 
HR = ~  [(a+6 + a 6) + 6(a+Sa + a+a 5) + 15(a+4a2 + a+Za 4) 

+60(a+3a+a+a3)+15(a+a+a4)+45(a+e+a~)] ( k = 3 )  (21) 

HR = ~-6 [ (a  § + a s) + 8(a+Ta + a+a  7) + 28 (a+6aa+  a+2a 6) 

+ 56(a+Sa3 + a--3a 5) + 28(a+6 + a 6) 

+ 168(a+Sa + a+a 5) + 420(a+aa2 + a + 2 a 4  ) 

+ 210(a+4 + a 4) + 840(a+3a + a + a  3) + 420(a+2 + a2)] (22) 

F rom equat ion  (12) we find that  to recast  H in the no rma l  fo rm we have  
to find an ope ra to r  S. such that  3 

A S. = ~-~ [2(a  +6 - a 6 ) + 18(a+Sa - a+a 5) + 90(a+4a 2 - a+2a 4 ) 

+360(a+3a-a+a3)+45(a+4-a4)+270(a+Z-a2)]  ( k = 3 )  (23) 

3It is to be noted that some errors crept into the expressions for S,, and E~ for the sextic 
oscillator (k = 3) as reported by Brajamani and Mazumdar (1988). 
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and 

A S. = ~ [3(a +8 - a 8) + 32(a +Ta - a+a 7) + 168(a+6a 2 - a+2a 6) 

+ 672(a+Sa 3 - a+3a 5) + 112(a +6 _ a 6) + 1008(a+Sa _ a+a 5) 

+ 5040(a+4a 2 - a+2a 4) + 1260(a +4 - a 4 ) + 10080(a+3a - a+a 3) 

+ 5040(a +2-  a2)] (k = 4) (24) 

The crucial point is that once S. is known, then it is a simple exercise to 
cast H in the normal form. Corresponding to equation (18), we obtain an 
expression for the eigenvalues from equation (10), 

E~ = (n+�89  (4n3+6n2+8n+3)+-i-~(4716nS+ll ,790n4 

+36,660n3+43,200n2+34,584n + 10,485) + .  �9 �9 (k = 3) 

En 
1- 35A 

= (n + ~) + ~-~- (2na+4n3 + 10n2+8n +3)  

A 2 
+ - -  (23,910n7+ 83,685n6+485,289n5 + 1,004,010n 4 

192 

+ 2,057,055n 3 + 2,123,415n 2 

+ 1,455,036n + 405,090) + .  �9 �9 (k = 4) 

(25) 

(26) 

3. RESULTS AND DISCUSSIONS 

We find that the transformation to the normal form via a series of  
unitary transformations can be carried out to any desired order in A. We 
have summed the normal form series following All et al. (1986). In Tables 
I and II we report the energy eigenvalues of  sextic and octic anharmonic 
oscillators. The values reported are all consistent with other tabulations of 
the energy levels (Banarjee, 1978; Hioe et al., 1976). This fact may be 
valuable when studying more realistic and consequently more complicated 
system. 
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Table I. Energy Levels for the Sextic Anharmonic Oscillator 

Eo(n =0)  E l (n = 1) E 2 (n =2)  

0.0001 0.5002 1.501 2.505 
0.001 0.5018 1.512 2.543 
0.01 0.5154 1.595 2.794 
0.1 0.5869 1.950 3.691 
1 0.8048 2.875 5.772 

10 1.282 4.756 9.807 
100 2.192 8.254 17.18 

E 3 (n =3)  E 4 (n =4)  E 5 (n =5)  

0.0001 3.512 4.524 5.542 
0.001 3.604 4.702 5.842 
0.01 4.132 5.606 7.209 
0.1 5.774 8.147 10.78 
1 9.325 13.41 17.98 

10 16.04 23.24 31.30 
100 28.22 40.99 55.27 

Table II. Energy Levels for the  Octic Anharmonic Oscillator 

E o (n =0)  E 1 (n = 1) E 2 (n =2)  

0.0001 0.5006 1.506 2.524 
0.001 0.5054 1.542 2.660 
0.01 0.5321 1.705 3.140 
0.1 0.6205 2.138 4.226 
1 0.8207 3.000 6.211 

10 1.191 4.500 9.532 
100 1.816 6.967 14.91 

E 3 (tl =3)  U 4 (n =4)  E 5 (n =5)  

0.0001 3.571 4.590 5.678 
0.001 3.904 5.023 6.412 
0.01 4.881 6.297 8.325 
0.1 6.869 8.881 11.99 
1 10.33 13.37 18.25 

10 16.02 20.75 28.45 
100 25.17 32.60 44.78 
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